def egquationformat (equation) :
equation += " "
tempside = []

tempcompound = []
result = []
lastchar = "'
num = "'°*
for i in equation:
if mat: (L= ¥ Yaeroi s &%)
tempcompound 4+= [1]
if i = " ' and tempcompound '= []:

tempcompound 4+= " °
tempside += [temnpcompoand]

tempcompound = []
for i in tempside:
for g inm i:
if {g.isalphai{) or g — " '} and pum '= ""':
tempcompound 4= ([lastchar] * (int (num)-1}))
num = "'°*

if g.isalphai):
tempcompound += [g]
lastchar = g

elif g.isnumeric() :
num += g

result += [tempcompound]
tempcompound = []

tempside = []
return result

This function puts the equation that was input into the format that the program can read. By
iterating through the characters of the equation and stopping at spaces and numbers, it turns things like

this “H20 + CO2” into [[H,H,O], [C,0,0]]. This is a list, which is very easy for the computer to read.

def balancetest (listl,list2):

rawlistl = []
rawlist2 = []
F I in - Figth:
F . in-d:
rawlistl += [q]
I in - Figtds
. in-d:
rawlist2 += [qg]

rawlistl.sortc ()
rawlist2.sortc ()
return (rawlistl = rawlist2)

This function checks to see if the equation is balanced. It does this in two steps. First, it ignores how the
elements are split up, changing “[[H,H,O],[C,0,0]]” to “[H,H,0,C,0,0].” Then it sorts them
alphabetically, making it [C,H,H,0,0,0]. It does this to both sides of the equation. It then gives you a true

or false answer for whether or not the sides are the same thing.

f baseconverter (value,baseX,digits) :
dividend = walue
result = []
- 1 in range (digits) :
result += [dividend%baseX]
dividend //= baseX
return result

This function is used when iterating through the possibilities to balance the equation. It converts an
integer into a list of numbers. This list of numbers is in whatever base you want. For example, I could ask,
“23 in Base 12” and it would give me [1,11], since 12*1 + 1*11 = 23. I need this because I have to be
able to select how many possibilities I want to iterate through, and I assign each ‘digit’ to a different

compound when balancing the equation.

while not done:
gide? = equationformat (inputequation[inputequation.index('="}4+1:1])
gidel = equationformat (inputequation|:inputequation.index('=")])

componentcount = len(sidel) + len(sidel)

balancefound = Falss
The actual code starts off by setting some variables. Next, it has a couple lines that warn the user if the

equation inputted will take unreasonably long.

if len({str{inputdepth ** componentcount)})} > 9 and not unsolvable:
if len{str {4 ** componentcount)) > 9:
print {'C rtunately, the program will take an unfeasable amount of time to solve this.'

done = True
unsolvable = True
inputdepth = int {input {'Unfortunately, the program will take a long time to solwve this

As long as the code doesn’t take a unreasonable amount of time to solve, the program moves on to the

next part of the loop.

cking ' + str{inputdepth ** componentcount) + ' possibilic
t balancefound) and (i < inputdepth ** componentcount}) :
1=
if (if (inputdepth ** componentcount))*100 > percent + 5:
percent += 5
print (str{percent) + '% of possibilities checked')
sidelclone = []
side2clone = []
baseXiteration = baseconverter (i-1,inputdepth, componentcount}
for z in range(len({baseXiteration)):
baseXiteration[z] += 1
for g in range (componentcount) :
if g4l <= lemn{zidel):
sidelclone += [sidel[g]] * bkaseXiteration[qg]

side2clone 4= [side2[g-(len{sidel)}}]] * basceXiteration[g]
if balancetest (sidelclone,side2clone):

balancefound = Trus=

if balancefound == Trus
print ("5
done = T

inputdepth = int {(input ("No balance found. Try increasing the maximam ratio. \nThe default i

This code does three things. First, it generates a combination of numbers to try balancing with, and it
assigns those numbers to the equation. Second, it checks if the equation is balanced with the new numbers

it just assigned. Thirdly, it prints the % of possibilities that have been checked.

Here are a couple of screenshots of the code in action.

| & Python 3.2.3 Shell - O e

File Edit Shell Debug Options Window Help

Python 3.8.3 (tags/v3.8.3:6f8c832, May 13 2020, 22:20:18) [MSC w.1925 32 bit (In
tel)] on win3z2

Type "help™, "copyright™, "credits™ or "license()™ for more information.

e

= RESTART: C:‘\Users‘\batal\AppData'Local%\Programs\PythonPython38-32\Equation Bal
ancer.py

Input eguation >>>C02 + H20 = CEH1206 + 02

Checking 160000 possibilities

5% of possibilities checked

10% of possibkbilities checked

15% of possibilities checked

20% of possibilities checked

25% of possibilities checked

Buccessful kalance found! Values are respectiwvely [&, &, 1, &]

>z |

