

This function puts the equation that was input into the format that the program can read. By

iterating through the characters of the equation and stopping at spaces and numbers, it turns things like

this “H2O + CO2” into [[H,H,O], [C,O,O]]. This is a list, which is very easy for the computer to read.

This function checks to see if the equation is balanced. It does this in two steps. First, it ignores how the

elements are split up, changing “[[H,H,O],[C,O,O]]” to “[H,H,O,C,O,O].” Then it sorts them

alphabetically, making it [C,H,H,O,O,O]. It does this to both sides of the equation. It then gives you a true

or false answer for whether or not the sides are the same thing.

This function is used when iterating through the possibilities to balance the equation. It converts an

integer into a list of numbers. This list of numbers is in whatever base you want. For example, I could ask,

“23 in Base 12” and it would give me [1,11], since 12*1 + 1*11 = 23. I need this because I have to be

able to select how many possibilities I want to iterate through, and I assign each ‘digit’ to a different

compound when balancing the equation.

The actual code starts off by setting some variables. Next, it has a couple lines that warn the user if the

equation inputted will take unreasonably long.

As long as the code doesn’t take a unreasonable amount of time to solve, the program moves on to the

next part of the loop.

This code does three things. First, it generates a combination of numbers to try balancing with, and it

assigns those numbers to the equation. Second, it checks if the equation is balanced with the new numbers

it just assigned. Thirdly, it prints the % of possibilities that have been checked.

Here are a couple of screenshots of the code in action.

